《价格理论》第27章


套急竿耆牌愿媒ㄖ氖褂茫ㄕ饪赡芤蟪掏R担炭梢猿鍪鄹媒ㄖ酥馑筒豢赡艽幼约旱囊滴裰饣竦萌魏伪ǔ辍H绻庋磕昊蚱渌奔涞ノ坏南奂鄹竦牡燃畚铮褪怯筛媒ㄖ镆鸬目杀涑杀尽M恚炭赡苡幸逦裣蚩杀湟氐乃姓咧Ц兑槐使潭ǖ姆延茫还茏约菏欠袷褂昧烁靡亍U庋槐史延媒ㄔ诠潭ǔ杀局小?br />
如果具备下列条件,固定成本与可变成本之间的差别和固定要素与可变要素之间的差别,就完全是相同的。这些条件是:(1)对每个可变要素的总支付额,等于其供给曲线的纵坐标乘以相应的数量[在图 5.15(a)中,Op乘以所用要素的数量];(2)固定要素供给曲线的水平部分与横轴重合'图5.15(b)中,Op=O'(3)合同规定的对固定要素的支付不会因完全不使用它而改变。
我们的生产函数没有明确地把企业家能力作为一个生产要素;更正确地说,它被认为决定着函数的形式。但我们可以通过假设它对每个厂商的供给曲线都类似图5.15(b)那样,即以OM为一个单位,水平部分与横轴重合,而认为它已包括在其他生产要素之中,但是用这种方式解释时,我们必须记住,每个厂商的企业家能力都是一个单独的生产要素,应该与所有其他厂商的企业家能力区别开来。
按正规的做法,我们将根据要素供给曲线的特征来区分“时期”。在最短的短期中,所有供给曲线都有一个如图5.15(b)中的无弹性部分:所有要素都是固定的。在最长的长时期里,所有供给曲线都如图5.15(a)中所示:所有要素都是可变的。应该指出,这个最长的长时期,意味着只有企业家能力供给曲线的水平部分是适用的,所以也就意味着存在无数具有相同生产函数的潜在厂商。中等长度的时期表明有些供给曲线如图5.15(a)中的那样,有些象图5.15(b)中的那样。当然,哪一种要素处于哪一类状况,取决于手头的问题。
给定产量时最小成本的条件
如果一个厂商要生产一种特定产品,就会有某种要素组合,使生产那种产品的成本最小。众所周知,使成本最小化的条件由下面的方程来确定:
(1)MPPa/MFCa=MPPb/MFCb=…
Xo=fi(a,i,…)
这里MPPa代表要素A的边际物质产品,即MPPa=afi/aa,MPPb…含义相同;MFCa代表A的边际要素成本,MFCb……的含义相同,Xo是需要生产的特定产品;而fi(a,b,…)则是厂商的生产函数。
不管生产要素供给曲线的形状如何,条件(1)都是成立的,但是为了简化起见,我们要继续仅限于考虑具有图5.15(a)和(b)所示的有限形式的要素供给曲线。
如果把要素供给曲线确定为有完全弹性,就像图5.15(a)那样,则只要有任何要素被利用,边际要素成本就等于价格(Op),而要素的价格就可以用方程(1)中相应比例的边际要素成本来代替。
如果确定供给曲线在某点之后是完全无弹性的,像图5.15(b)中那样,则当产量为OM时边际要素成本就是OP以上任何一点,而当产量在O与OM之间时,边际要素成本为OP。要根据方程(1)决定生产一个给定的产量时使用的要素最优组合,则只要所得的解是一个等于或小于MPPd/Op(d=OM)的比率的公值,那么,这样一个要素(譬如要素D)的比率在解方程(1)时就可以忽略不计,这样,此边际要素成本就可确定为等于为使该比率等于其他要素的相应比率,且使要素的使用量为OM所需的任何一个数,如果此公比大于MPPd/Op(d=OM),它就不是解。因此,MFCd就应该被方程(1)中的Op来代替,从而解出新的方程。这将涉及到使要素D的使用量小于OM。当OP等于零,且当D的数量为OM的边际物质产品为负数时,就会出现这第二种可能性;那么所使用的D数量将是任何一个使其边际物质产品等于零的数量。
总的、边际的和平均的可变成本曲线
对每个可能的产量,我们都可以设想厂商是通过解方程(1)来决定怎样生产那个产量的。与这样一个决策相对应,就有某种总的可变成本——其总数等于那个产量的契约成本和与厂商的决策相对应的最小契约成本之间的差额。我们可以在图形上将总可变成本表示为产量的函数。这条曲线可能具有各种形状,这要看生产要素具体的供给条件和厂商生产函数的具体形状。在图5.16(a)和(b)中描绘了多种可能的情形,以便说明可能影响总可变成本曲线形状的各种因素。
在图5.16(a)中,所有曲线的共同特征是它们都通过原点;即当产量接近零时,总可变成本也接近于零。这意味着,没有什么成本是可以通过停业而避免的。曲线A表示成本以固定的比例增长——两倍的产量就有两倍的成本等等。如果所有租用的要素都是可变的,厂商的生产函数是一阶齐次的,以致于企业家能力并不重要,这种曲线就会出现。
曲线B在起初是与A重合的,但是以后成本比产量增长得更快。这种情况的产生可能是由于存在一种或更多的固定要素,包括企业家能力,以及没有不可分割性。对于低产量,要素的最优组合要求固定要素少于最大数量,这就是说,厂商将按所有要素供给曲线的水平部分活动。产量的增长将通过按比例地增加所有要素的使用量,而得到要求可利用的固定要素有一个最大数量时,以这种方式实现产量的增长就不可能了。在固定要素的最大数量这一点上,B线与A线分开了。
曲线C要求的实质是和B同样的条件,但有一点除外,即固定要素和厂商控制之外的要素所规定的限制条件,从一开始就在某种程度上发挥着作用。曲线D表示成本最初的增加在比例上小于产量,这可能是由于所使用的任何要素或厂商控制之外的要素都具有不可分割性。
图5.16(b)基本上同样重新展示了四种情况,只是下面这点做了修改,即产量接近于零时,总可变成本并不接近于零。在所有四种情况里,都存在成本Ot,它在完全停业时可以避免,但是只要厂商仍然开业,它就是不可避免的——所有成本曲线都应解释成包含纵轴O和t之间的部分。这些成本可以由这样的项目构成,即对工厂设备的残值所牺牲的利息,根据合同对要素支付的固定报酬,而该合同只有在厂商停业时才可终止,还有每年的执照费,等等。
对每一个产量,我们都可以要求知道,对于产量的微小变化来说,每单位产量的变化将引起多少总可变成本的变化。当然,这是由总可变成本曲线的斜率给定的,并被称作边际成本。很明显,这样定义的边际成本,对曲线A和A’B和B’、C和C’、D和D’都是一样的。由此形成的四条边际成本曲线都画在图5.17中。然而,对于图5.16(a)和(b)中的总成本曲线来说,边际成本曲线的完全相同隐蔽了一个不是不必要的细节。就图5.16(a)中的曲线而言,总可变成本指相应的边际成本曲线以下的区域;就图 5.16(b)中的曲线而言,总可变成本大于相应的边际成本曲线以下的区域,其大于的数量为Ot。
这个区别可以通过画出平均可变成本曲线来说明,这种曲线表明在每个产量水平上每单位产量的可变成本。图5.18(a)至(d)显示了平均可变成本曲线和边际成本曲线之间的关系。如果产量趋向于零时,总可变成本也趋向于零。则产量趋向于零时,平均可变成本接近于边际成本;否则,当产量趋向于零时平均可变成本趋向于无穷大。当然,在所有的情况下,平均可变成本在它们超过边际成本时是下降的,否则就是上升的。
这些平均可变成本曲线本身可看作相当特殊的边际成本曲线类型——它们表示生产一个给定的产量而不是完全不生产时引起的每单位产量的成本变化,而通常的边际成本曲线则表示在多生产或少生产一个很小的数量时引起的每单位产量的成本变化。
厂商的产量决策
图5.18中的成本曲线为回答大量关于厂商决策的不同问题奠定了基础。虽然总体上我们已经一直在讨论产品市场上的竞争条件,但是在这里我们可以进行更加一般的论述,并且也把垄断条件包括进来。
(1)对一条给定需求曲线而言的最优产量
单个厂商产品的需求
小说推荐
返回首页返回目录